A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case

نویسنده

  • Michael Hinze
چکیده

A new discretization concept for optimal control problems with control constraints is introduced which utilizes for the discretization of the control variable the relation between adjoint state and control. Its key feature is not to discretize the space of admissible controls but to implicitly utilize the first order optimality conditions and the discretization of the state and adjoint equations for the discretization of the control. For discrete controls obtained in this way an optimal error estimate is proved. The application to control of elliptic equations is discussed. Finally it is shown that the new concept is numerically implementable with only slight increase in program management. A numerical test confirms the theoretical investigations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Control-constrained parabolic optimal control problems on evolving surfaces - theory and variational discretization

We consider control-constrained linear-quadratic optimal control problems on evolving hypersurfaces in R. In order to formulate well-posed problems, we prove existence and uniqueness of weak solutions for the state equation, in the sense of vector-valued distributions. We then carry out and prove convergence of the variational discretization of a distributed optimal control problem. In the proc...

متن کامل

Projector preconditioning for partially bound-constrained quadratic optimization

Preconditioning by a conjugate projector is combined with the recently proposed MPRGP algorithm for the solution of bound constrained quadratic programming problems. If applied to the partially bound constrained problems, such as those arising from the application of FETI based domain decomposition methods to the discretized elliptic boundary variational inequalities, the resulting algorithm is...

متن کامل

The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems; implementation, convergence and globalization

Combining the numerical concept of variational discretization introduced in [11, 12] and semi-smooth Newton methods for the numerical solution of pde constrained optimization with control constraints [9, 22] we place special emphasis on the implementation and globalization of the numerical algorithm. We prove fast local convergence of a globalized algorithm and illustrate our analytical and alg...

متن کامل

On local convergence of sequential quadratically-constrained quadratic-programming type methods, with an extension to variational problems

We consider the class of quadratically-constrained quadratic-programming methods in the framework extended from optimization to more general variational problems. Previously, in the optimization case, Anitescu (SIAM J. Optim. 12, 949–978, 2002) showed superlinear convergence of the primal sequence under the Mangasarian-Fromovitz constraint qualification and the quadratic growth condition. Quadr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2005